
Intertraff ANPR Engine SDK Documentation

Intertraff ANPR Engine SDK
Documentation

1



Intertraff ANPR Engine SDK Documentation

Introduction 4

SDK licensing 4
“Parking” version (slow version) 4
“FreeFlow” version (high speed traffic) 4
Demo version 4
SDK license transfer 4

Architecture overview 5

Supported programming languages 5

Hardware requirements 5

Supported image / video formats 6

Supported video sources 6

Supported countries 6

Dataset resolution 7

Crop region 9

Synchronous and Asynchronous 10

Benchmarks 11

Sample applications 12
Overview 12
VideoSample example 13
VideoAsinc example 14
PlateRecognize example 15
Multicameras example 15

Getting started 16
How to install the SDK 16
Adding the SDK to your project 16

Reference 16
Enumerators 16

NNANPR_Device 16
NNANPR_PlateType 16
NNANPR_ImageFormat 16
NNANPR_GeographicalArea 16

Structures 17
NNANPR_Object 17
NNANPR_RecognizerResult 17

2



Intertraff ANPR Engine SDK Documentation

Functions 17
NANPR_CreatePlateFinder 17
NNANPR_SetupPlateFinder 18
NANPR_SetPlateFinderCroppingRegion 18
NNANPR_GetPlateFinderSpecificNames 19
NNANPR_FreePlateFinder 19
NNANPR_CreatePlateRecognizer 19
NNANPR_SetupPlateRecognizer 19
NNANPR_GetPlateRecognizerSpecificNames 20
NNANPR_FreePlateRecognizer 20
NNANPR_CreateImage 20
NNANPR_FreeImage 20
NNANPR_CloneImage 21
NNANPR_LoadImage 21
NNANPR_SaveImage 21
NNANPR_DrawRect 21
NNANPR_GetImageData 22
NNANPR_CreateImageWindow 22
NNANPR_FreeImageWindow 22
NNANPR_DrawImage 23
NNANPR_ImageWindowStartDrawCrop 23
NNANPR_ImageWindowStopDrawCrop 23
NNANPR_ImageWindowShowCrop 24
NNANPR_WaitImageWindow 24
NNANPR_CreateVideoCapture 24
NNANPR_GetSpecialVideoCaptureList 25
NNANPR_CreateSpecialVideoCapture 25
NNANPR_FreeVideoCapture 26
NNANPR_CaptureFrame 26
NNANPR_StartCaptureFrameAsync 26
NNANPR_StopCaptureFrameAsync 26
NNANPR_GetVideoFPS 27
NNANPR_FindPlates 27
NNANPR_FindPlatesAsync 27
NNANPR_ReconizePlate 28
NNANPR_ReconizePlateAsync 28
NNANPR_CreateRecognitionAccumulator 29
NNANPR_SetupRecognitionAccumulator 29
NNANPR_FreeRecognitionAccumulator 30
NNANPR_ReconizePlateAsyncWithAccumulator 30
NNANPR_GetErrorString 31

3



Intertraff ANPR Engine SDK Documentation

Introduction
The purpose of this SDK is to facilitate the creation of different ANPR (Automatic Number Plate
Recognition) systems or to add the ANPR functionality to other projects for Windows 10 OS. The SDK
contains a set of programming examples written in different programming languages which can be
used as a starting point.

At any time the SDK installation folder can be accessed by selecting the Intertraff / ANPR
Engine SDK Folder menu option of the Windows Start menu.

SDK licensing
After the software is installed on the target PC, the customer requires a license ID and a password to
activate it. At the time of activation the target PC should have reliable Internet connection. To activate
the SDK just start the VideoAsync example application or Activator-Deactivator.exe program
(in the bin subfolder of the SDK installation folder) and enter provided credentials to the appeared
activation dialog.

There are three SDK license options:

“Parking” version (slow version)
This version cannot process image or video files. Just live video sources. And there will be 3 seconds
blackout time between successive plate recognition results.

“FreeFlow” version (high speed traffic)
Full featured version without any restrictions.

Demo version
It is the full featured version with time limitation. The license expires at the end of every month but the
customer can get a new one.

SDK license transfer
To move the license on another PC the customer needs to choose the Intertraff / License
Transfer menu option of the Windows Start menu. Then he will be asked if he wants to
“Deactivate license ID xxx”. After deactivation he will be able to install the SDK on another PC
using the same ID and password he’s got.

This operation can be done only for a certain number of times. Then you need to contact Intertraff
to be able to re-transfer the license on another machine.

4



Intertraff ANPR Engine SDK Documentation

Architecture overview
ANPR engine internally consists of two distinct parts: Plate Finder and Plate Recognizer. The Plate
Finder searches for all car license plates on submitted images or video frames and returns bounding
boxes of all found objects together with its confidence levels (probabilities that the found object is a real
license plate). The Plate Recognizer takes the particular bounding box on the image and returns the
license plate text string. For some countries, it also returns the country and region within other useful
information concerning the recognized license plate (see NNANPR_RecognizerResult structure in
the Reference section for more information).

There is an option to assign the particular device to execute the Plate Finding and Plate Recognizer
operations. These can be: CPU, Intel GPU, Intel Movidius Myriad Processing Unit, NVidia GPU or
external online server (only for Plate Recognition operation).

There are different varieties of the Plate Finder and the Plate recognizer even inside one geographical
area (see NNANPR_GetPlateFinderSpecificNames and
NNANPR_GetPlateRecognizerSpecificNames functions). As a rule the bigger the number in the
variety name the more precise operation is and the more time it takes.

At API level the SDK provides a set of functions to create, manipulate, use and destroy the following
objects through obscure pointers:

● image objects;
● image window objects;
● video capture objects;
● plate finder objects;
● plate recognizer objects;
● accumulator of recognition results objects;

Supported programming languages
Currently the SDK targets Visual Studio 2017 C++ / C# and Delphi 10 programming languages but
other versions may work too.

Hardware requirements
The SDK shall be installed on Windows 10 64bit O/S and requires either Intel 64 bit CPU, Intel GPU
and / or NVidia GPU that supports CUDA version 11 or higher. Nvidia GPU can also be used without
CUDA but the performance may be 50% slower. The SDK can also be executed on Intel Movidius
(Myriad) Processing Unit. The PC should be equipped with at least 4GB RAM.

5



Intertraff ANPR Engine SDK Documentation

Supported image / video formats
The SDK can read the following image formats:

● Windows bitmaps - *.bmp, *.dib
● JPEG files - *.jpeg, *.jpg, *.jpe
● JPEG 2000 files - *.jp2
● Portable Network Graphics - *.png
● Portable image format - *.pbm, *.pgm, *.ppm *.pxm, *.pnm
● TIFF files - *.tiff, *.tif

The list of supported video formats depends on the video codecs installed in the operating system. We
recommend to install the K-Lite Codec Pack.

Supported video sources
The SDK can work with the following video sources: video files, IP-cameras (identified by URL) and
Industrial cameras manufactured by the following brands: Basler, Flir (formerly Point Grey Research
Inc.), IDS and Lucid Vision Labs (see NNANPR_GetSpecialVideoCaptureList function for
details).
If you wish to operate our SDK with a supported industrial camera, please ensure that the Industrial
Camera SDK has been installed. See the table that follows:

Camera Manufacturer Supported SDK

Basler AG Pylon Camera Software Suite v. 5.0.10.10613

FLIR Systems Inc Spinnaker SDK, v. 2.0.0.147

IDS Imaging Development Systems GmbH IDS Software Suite 4.94

Lucid Vision Labs Inc Arena SDK – Win 32/64-bit, v. 1.0.24.7

The SDK parses input video sources into a set of subsequent frames. It is up to the user to submit all or
just a subset of them to the Plate Finding / Plate Recognizer operations.

Supported countries
All supported countries are part of the following geographical areas:

● Europe (including Russia)
● The Middle East
● Africa
● Asia and Australasia

6

https://codecguide.com/


Intertraff ANPR Engine SDK Documentation

● USA and South America

You don’t need to select the particular country, just denote the area (where the country of interest is
located) in the appropriate API functions. For some countries the SDK is also able to report particular
country region.

Dataset resolution
For each Geographical Area supported, the SDK provides different versions of the Plate Finder dataset
(see NNANPR_GetPlateFinderSpecificNames and
NANPR_GetPlateRecognizerSpecificNames functions).
For example, for Europe the SDK contains the following Plate Finder datasets:

● EU 1280
● EU 832
● EU 608
● EU 416

Before submitting the original image to the Plate Finder, the SDK will resize it. If you select EU 416, this
means that the original image will be resized to 416 x 416 pixels before being submitted to the Plate
Finder. Therefore regardless of the original size of the image, the SDK will always resize it to 416 x 416
pixels.
If the plate is quite small in the original image, after resizing it to 416 x 416 pixel, this may appear
really tiny. See the images which follow:

7



Intertraff ANPR Engine SDK Documentation

The resolution of the image below is 1288 x 964 pixels

8



Intertraff ANPR Engine SDK Documentation

When the image is resized to 416 x 416 (see the picture that follows), the plate of the car located at a
farther distance from the camera becomes very small and so the software might not detect it.

To overcome this problem there are two alternatives: either to use a bigger Plate Finder dataset (such
as the 608 that requires more computational power) or to crop the original image using the Crop
Region function before submitting it to the Plate Finder dataset. If the resolution of the original image is
quite big (i.e. 2 or 3 Megapixel), you might consider using both solutions together.
On the other hand the bigger the license plate in the image (in pixels) the better the detection and
reading results after the image shrinkage.
All the steps described in this section are automatically done by the SDK. You don’t need to write a
single line of code to crop or resize the input image.

Crop region
The crop region feature may be useful when you wish to remove a part of the image where it will be
very unlikely to find a license plate (part of the sky, pavement, bush etc).
If enabled the Plate Finder will search for license plates only inside this region (see
NANPR_SetPlateFinderCroppingRegion function). Currently the crop region is just one
rectangular area.

9



Intertraff ANPR Engine SDK Documentation

Synchronous and Asynchronous
There are two major flavours of the Plate Finding and the Plate Recognizer operations: synchronous
and asynchronous. Synchronous operations do not return any result until this is ready. On the other
hand asynchronous operations return control to the caller immediately and as soon as the result is
ready, this is returned through the provided callback function.
Also the asynchronous Plate Recognizer operation can be enhanced by adding a so-called recognition
results accumulator (see NNANPR_ReconizePlateAsyncWithAccumulator function). The
accumulator can accumulate separately a set of different results of Recognition Operation over a
sequence of images, merging together similar results (and enhancing their confidence). It fires
recognition callback only when some predefined condition is met like accumulation time span or
number of accumulated results for one license plate.

10



Intertraff ANPR Engine SDK Documentation

Benchmarks
The figures contained by the tables which follow, report the time taken by the Plate Finding and Plate
Recognizing operation (particularly NNANPR_FindPlates and NNANPR_ReconizePlate functions)
to process one or more license plates in images with a size of 825x550 pixels. Plate Finder version V4
is more accurate although it requires more time compared to its predecessor. Figures for particular PC
may vary a little bit depending on the current overall system load.

Computational device for
Plate Finding

time [ms]*

EU 416 EU v4 416 EU 608 EU v4 608 EU 832 EU v4 832

CPU Intel Atom E3950 1.6 GHz 237 304 424 611 759 1135

GPU Intel Atom E3950 1.6 GHz 98 120 223 252 435 475

CPU Intel Core i5-3570 3.4 GHz 54 72 97 132 168 233

CPU Intel Core i5-9500 3.0 GHz 19 23 35 44 56 78

GPU Intel Core i5-9500 3.0 GHz 90 120 158 263 240 439

CPU Intel Core i9-9900K 3.6 GHz 19 25 38 53 71 90

GPU Intel Core i9-9900K 3.6 GHz 17 44 27 88 43 160

GPU GeForce GTX 1050 CUDA 18 18 24 29 35 47

GPU GeForce GTX 1050 without
CUDA

51 85 112 164 191 248

GPU GeForce RTX 2080 CUDA 7 11 12 17 20 28

GPU GeForce RTX 2080 without
CUDA

44 61 80 115 144 208

11



Intertraff ANPR Engine SDK Documentation

Computational device for
Plate Recognizing

time [ms]*

EU 416

CPU Intel Atom E3950 1.6 GHz 235

GPU Intel Atom E3950 1.6 GHz 99

CPU Intel Core i5-3570 3.4 GHz 70

CPU Intel Core i5-9500 3.0 GHz 18

GPU Intel Core i5-9500 3.0 GHz 93

CPU Intel Core i9-9900K 3.6 GHz 19

GPU Intel Core i9-9900K 3.6 GHz 16

GPU GeForce GTX 1050 CUDA 18

GPU GeForce GTX 1050 without CUDA 47

GPU GeForce RTX 2080 CUDA 7

GPU GeForce RTX 2080 without CUDA 45

* averaged over 10 different images;

Sample applications

Overview
The SDK contains several programming examples for C++, C# and Delphi programming languages in
corresponding subfolders of the Examples folder. All GUI examples have the same look and
functionality so different programming languages are not distinguished here.

GUI examples can accept both the separate images and the video streams. The console
PlateRecognize example can work only with a single image file. On the other hand the Multicameras
console example works only with video sources.

The Settings dialog of the GUI examples allows to select geographical area, particular plate finder
and plate recognizer varieties for the area and the hardware device on which these operations will be
executed. Min plate height option if not zero allows to filter plate bounding boxes after the Plate
Finding stage and before submitting them to the Plate Recognition stage (in fact it’s the height of the
bounding box). Also the recognition accumulator can be adjusted here if selected.

12



Intertraff ANPR Engine SDK Documentation

As for the Plate Finder and the Plate Recognizer varieties of the same geographical area. It is
important to highlight that they are not about the particular country selection. They are about
performance and precision of the operations. The Plate Finder or the Plate Recognizer variety name
consists of the geographical area shortcut and some number. This number designates the size in pixels
to which the input source image will be resized internally before applying the operation. For example
the variety name “EU 416” means that this operation is for European area and it resizes any input
image to 416 x 416 pixels sized image before executing the operation itself. The smaller this size the
faster the operation but at the same time it is less accurate. Also you have to take this information into
account for example when looking for small license plates on a big image. After significant downsizing
of the image the plate may become completely unreadable. On the other hand images of big plates (in
pixels) may give better results after proper shrinkage.

To evenly distribute the load and increase performance it is always preferable to select different devices
for the Plate Finding and Plate Recognition operations.

There is one important thing concerning particularly the C# example: under the Visual Studio debugger
the program may issue an exception like “Attempting managed execution inside OS Loader lock”.
This issue is due to the program protection / licensing software. It doesn’t lead to any other
problems during the program execution and can be safely ignored (just uncheck the LoaderLock
exception in the Debug -> Exceptions dialog of the Visual Studio).

VideoSample example
This example makes use of synchronous versions of Plate Finding and Plate Recognition operations.
So usage of the Recognition Accumulator is disabled here (in the Config dialog).

C++ example with single image recognition result.

13



Intertraff ANPR Engine SDK Documentation

Here is the plate recognition inside the defined crop region. Defining the crop region may be very useful
in some use case scenarios like barriers or when you need to control only one traffic lane on a
multilane road. Every plate outside the crop region is neglected at the Plate Finding stage.

.. and here is the Delphi version screenshot with Settings dialog opened (Use recognition
accumulation option is disabled here).

VideoAsinc example
This example is similar to the previous one but it makes use of asynchronous versions of Plate Finding
and Plate Recognition operations and the Recognition Accumulator can be engaged here (see the
Settings dialog).

14



Intertraff ANPR Engine SDK Documentation

here is the C# version with Settings dialog opened. Min plate height option is not zero here and all
found license plates will be filtered before the plate recognition stage.

PlateRecognize example
This is the console based C++ example (but it can open the separate GUI window to illustrate the plate
recognition result). It uses Europe plate finder and plate recognizer executed on Intel CPU.

Usage:

PlateRecognize.exe image_file_path

Multicameras example
This is also C++ console based example which illustrates how the SDK can work with several different
live video sources (cameras).

Usage:
Multicameras.exe url1 [url2] [url3] [-PF {0,1,2,3,4}] [-PR

{0,1,2,3,4}]

where:
-PF is a plate Finder device selector and -PR is a plate recognition device selector;

0 - Intel CPU(default), 1 - Intel GPU, 2 - Intel Myriad, 3-Server, 4 - NvidiaGPU.

15



Intertraff ANPR Engine SDK Documentation

Getting started

How to install the SDK
Just run the installer. Here you can select the installation folder and shortcuts creation.

Adding the SDK to your project
To add the SDK into your project just reference files from the Include subfolder of the installation
folder. These are nnAnpr.h and nnAnpr.lib for C++ projects, nnAnpr.pas for Delphi projects and
nnAnpr.cs for C# projects.

As a starting point you can review the source code of the example applications in the Examples
subfolder of the SDK installation folder.

Reference
The following references comply with C++ syntax rules. But the SDK also supports a few other
programming languages like C# and Delphi. All entity names and their semantics are the same in all
languages. But some details like function signatures may be different. Please refer to the provided
header files for particular details.

Enumerators

● NNANPR_Device
{ nndIntelCPU = 0, nndIntelGPU, nndMyriad, nndServer, nndNvidiaGPU }

● NNANPR_PlateType
{ nnptNotDefined = 0 , nnptTaxi, nnptDiplomatic }

● NNANPR_ImageFormat
{ nnifU8C3 }

● NNANPR_GeographicalArea
{ nngaEurope, nngaMiddleEast, nngaAfrica, nngaAsia_Australasia,
nngaUSA_SouthAmerica }

16



Intertraff ANPR Engine SDK Documentation

Structures

● NNANPR_Object
{

int classId - class identifier of the found object (license plate);
RECT Position - position of the found object;
double Confidence - confidence level of this object finding result;

}

● NNANPR_RecognizerResult
{

wchar_t Characters[NNANPR_NumberPlateMaxSize] - recognized plate number in
UTF-16 encoding. In some countries the plate string consists of two parts with different
alphabets (e.g. some plate types in Kingdom of Saudi Arabia have arabic part and duplicating it
latin part). In this case the second part follows right after the first part in square brackets. For
example: .[6047VAJ]حاى٦٠٤٧ Characters outside the actual plate string are zeroed.

float CharacterConfinedces[NNANPR_NumberPlateMaxSize] - confidences for
each found symbol;

wchar_t Country[NNANPR_CountryMaxSize] - country information of the found plate;
empty if it’s not detected;

wchar_t CountryRegion[NNANPR_CountryRegionMaxSize]- country region
information of the found plate; empty if it’s not detected;

NNANPR_PlateType PlateType - found plate type; nnptNotDefined if not detected;
COLORREF Color - colour of the found plate; 0xffffffff if not detected;
RECT platePosition - coordinates of the found plate; coordinate origin is at upper left
corner of the image;

NNANPR_RESULT ErrorCode - error code of the operation;
}

Functions

● NANPR_CreatePlateFinder

NNANPR_RESULT NANPR_CreatePlateFinder(

17



Intertraff ANPR Engine SDK Documentation

NNANPR_GeographicalArea ga,
NNANPR_Device device,
NNANPR_PlateFinder_ptr *pPlateFinder_ptr,
const wchar_t *pSpecificName = nullptr)

The function creates a Plate Finder object and binds it to the particular device for execution.

parameters:

device - device used for processing by created Plate Finder object;
pPlateFinder_ptr - created Plate Finder object;
pSpecificName - specific name, null for default plate finder;

Device cannot be nndServer (i.e. plate finding operation can be done only locally).

● NNANPR_SetupPlateFinder

NNANPR_RESULT NNANPR_SetupPlateFinder(
NNANPR_PlateFinder_ptr pPlateFinder_ptr,
double Threshold)

The function sets the minimum acceptable confidence level for plate finding operation.

parameters:

pPlateFinder_ptr - Plate Finder object;
Threshold - minimum acceptable confidence level for plate finding operation in the range 0...1;

● NANPR_SetPlateFinderCroppingRegion

NNANPR_RESULT NANPR_SetPlateFinderCroppingRegion(
NNANPR_PlateFinder_ptr pPlateFinder_ptr,
RECT PixelCoords,
RECT PercentCoords)

It sets the cropping region for the Plate Finder so that the Plate Finder will search for license plates only
inside this region.

parameters:

pPlateFinder_ptr - Plate Finder object;
PixelCoords - cropping region in absolute pixel coordinates;
PercentCoords - cropping region in relative to the image sizes coordinates;

18



Intertraff ANPR Engine SDK Documentation

Coordinates origin is at the top left corner of the image.
Region value of {0,0,0,0} disables the crop region;
PixelCoords have higher priority.

● NNANPR_GetPlateFinderSpecificNames

NNANPR_RESULT NNANPR_GetPlateFinderSpecificNames(
NNANPR_GeographicalArea ga,
wchar_t *pFinderSpecificNamesBuffer,
size_t BuffSize)

It gets the list of specific Plate Finder names for use in the NNANPR_CreatePlateFinder function.
The name consists of the geographical area shortcut and the number. The bigger this number the more
precise the plate finder and the more time / resources it takes to execute the plate finding operation.

● NNANPR_FreePlateFinder

NNANPR_RESULT NNANPR_FreePlateFinder(
NNANPR_PlateFinder_ptr pPlateFinder_ptr)

It releases the Plate Finder object and frees occupied memory;

● NNANPR_CreatePlateRecognizer

NNANPR_RESULT NNANPR_CreatePlateRecognizer(
NNANPR_GeographicalArea ga,
NNANPR_Device device,
NNANPR_PlateRecognizer_ptr *pPlateRecognizer_ptr,
const wchar_t *pSpecificName = nullptr)

The function creates a Plate Recognizer object and binds it to the particular device for execution.

parameters:

device - device used for processing by created Plate Recognizer object;
pPlateFinder_ptr - created Plate Recognizer object;
pSpecificName - specific name, null for default plate finder;

● NNANPR_SetupPlateRecognizer

19



Intertraff ANPR Engine SDK Documentation

NNANPR_RESULT NNANPR_SetupPlateRecognizer(
NNANPR_PlateRecognizer_ptr pPlateRecognizer_ptr,
double Threshold)

The function sets the minimum acceptable confidence level for plate recognition operation.

parameters:

pPlateRecognizer_ptr - Plate Recognizer object;
Threshold - minimum acceptable confidence level for plate recognizing operation in the range
0...1;

● NNANPR_GetPlateRecognizerSpecificNames

NNANPR_RESULT NNANPR_GetPlateRecognizerSpecificNames(
NNANPR_GeographicalArea ga,
wchar_t *pPlateRecognizerNamesBuffer,
size_t BuffSize)

It gets the list of specific Plate Recognizer objects for use in the NNANPR_CreatePlateRecognizer
function. The name consists of the geographical area shortcut and the number. The bigger this number
the more precise the plate recognizer and the more time / resources it takes to execute the plate
recognizing operation.

● NNANPR_FreePlateRecognizer

NNANPR_RESULT NNANPR_FreePlateRecognizer(
NNANPR_PlateRecognizer_ptr pPlateRecognizer_ptr)

It releases the Plate Recognizer object and frees occupied memory.

● NNANPR_CreateImage

NNANPR_RESULT NNANPR_CreateImage(
NNANPR_Image_ptr *pImage_ptr)

It creates image object.

● NNANPR_FreeImage

20



Intertraff ANPR Engine SDK Documentation

NNANPR_RESULT NNANPR_FreeImage(
NNANPR_Image_ptr pImage_ptr)

The function releases the image object and frees occupied memory.

● NNANPR_CloneImage

NNANPR_RESULT NNANPR_CloneImage(
NNANPR_Image_ptr pSourceImage_ptr,
NNANPR_Image_ptr pResultImage_ptr)

It makes deep copy of the image object. The destination image object must be created by the
NNANPR_CreateImage function first.

● NNANPR_LoadImage

NNANPR_RESULT NNANPR_LoadImage(
const wchar_t *pImagePath,
NNANPR_Image_ptr pImage_ptr)

It loads an image from a file to the already created image object. The function supports a set of
common image formats like JPEG, BMP, PNG, etc. The image format is determined by the file name
extension.

● NNANPR_SaveImage

NNANPR_RESULT NNANPR_SaveImage(
const wchar_t *pImagePath,
NNANPR_Image_ptr pImage_ptr)

It saves the image referenced by the image object to a file. The function supports a set of common
image formats like JPEG, BMP, PNG, etc. The image format is determined by the file content, not by
the file name extension.

● NNANPR_DrawRect

NNANPR_RESULT NNANPR_DrawRect(
NNANPR_Image_ptr pImage_ptr,
RECT r,

21



Intertraff ANPR Engine SDK Documentation

COLORREF rgb,
int thickness)

The function draws a rectangle on the image referenced by the image object.

● NNANPR_GetImageData

NNANPR_RESULT NNANPR_GetImageData(
NNANPR_Image_ptr pImage_ptr,
NNANPR_ImageFormat imageFormat,
DWORD *width,
DWORD *height,
void *OutputArray,
size_t OutputArraySize)

The function gets image related data from the provided image object.

parameters:

imageFormat - expected image format;
width - returned image width;
height - returned image height;
OutputArray - provided buffer for image pixel data array. If it’s null the function returns only the
image sizes;
OutputArraySize - the size of the provided image pixel buffer;

● NNANPR_CreateImageWindow

NNANPR_RESULT NNANPR_CreateImageWindow(
HWND parentHwnd,
NNANPR_ImageWindow_ptr *pImageWindow_ptr)

It creates a window object to draw image objects on it.

parameters:

parentHwnd - handle of the parent window. If it’s null - the function creates dialog window;
pImageWindow_ptr - output window object;

22



Intertraff ANPR Engine SDK Documentation

● NNANPR_FreeImageWindow

NNANPR_RESULT NNANPR_FreeImageWindow(
NNANPR_ImageWindow_ptr pImageWindow_ptr)

It closes the window associated with the image window object and frees resources.

● NNANPR_DrawImage

NNANPR_RESULT NNANPR_DrawImage(
NNANPR_ImageWindow_ptr pImageWindow_ptr,
NNANPR_Image_ptr pImage_ptr)

The function renders the image in the window.

parameters:

pImageWindow_ptr - image window object holding the graphical window;
pImage_ptr - image object with image to be rendered;

● NNANPR_ImageWindowStartDrawCrop

NNANPR_RESULT NNANPR_ImageWindowStartDrawCrop(
NNANPR_ImageWindow_ptr pImageWindow_ptr,
NNANPROnCropSelectedCallback *pOnCropSelectCallback,
void *pAddInfo)

The function enables drawing a rectangle representing crop region on the image window by the mouse.
Pressing the left mouse button starts drawing the rectangle. When the left mouse button is released the
drawing is finished and the pOnCropSelectCallback is called with the pAddInfo additional
parameter. The rectangle will be rendered in green colour with line width equal to 3.

parameters:

pImageWindow_ptr - image window object for drawing;
pOnCropSelectCallback - callback function which will be called when the left mouse button is
released;
pAddInfo - parameter passed to the callback function;

23



Intertraff ANPR Engine SDK Documentation

● NNANPR_ImageWindowStopDrawCrop

NNANPR_RESULT NNANPR_ImageWindowStopDrawCrop(
NNANPR_ImageWindow_ptr pImageWindow_ptr)

The function disables drawing on the specified image window by the mouse.

● NNANPR_ImageWindowShowCrop

NNANPR_RESULT NNANPR_ImageWindowShowCrop(
NNANPR_ImageWindow_ptr pImageWindow_ptr,
bool showCrop)

The function shows / hides the current crop region on the specified image window depending on the
showCrop parameter.

● NNANPR_WaitImageWindow

NNANPR_RESULT NNANPR_WaitImageWindow(
NNANPR_ImageWindow_ptr pImageWindow_ptr,
DWORD AutoCloseWaitTimeMS,
bool closeByPressAnyKey)

The function closes the image window with no parents. The window will be closed either after pressing
any key (if closeByPressAnyKey is true) or after specified timeout. The function blocks till the
window is closed.

parameters:

pImageWindow_ptr - the window which should be closed;
AutoCloseWaitTimeMS - closing timeout in milliseconds;
closeByPressAnyKey - if true the window will be closed on the keypress;

return values:

1 - the windows was closed by keypress;
AutoCloseWaitTimeMS - the window was closed after specified time interval;
0 - the window has parent window and nothing happened;

24



Intertraff ANPR Engine SDK Documentation

● NNANPR_CreateVideoCapture

NNANPR_RESULT NNANPR_CreateVideoCapture(
NNANPR_ImageCapture_ptr *pImageCapture_ptr,
const wchar_t *pVideoFileorURL)

The function creates the video capture object to parse a video stream either from the video file or from
the online source referenced by URL.

parameters:

pImageCapture_ptr - created video capture object;
pVideoFileorURL - UTF-16 encoded null terminated C-string containing either video file path on
local PC or URL of the online video stream;

● NNANPR_GetSpecialVideoCaptureList

NNANPR_RESULT NNANPR_GetSpecialVideoCaptureList(
wchar_t *pSpecialVideoCaptureNamesBuffer,
size_t BuffSize)

The function returns a list of video sources names which require special treatment. Currently It can be
Flir and Point Grey industrial cameras (only USB 3.0 and GigE). In the near future, the SDK will also
support cameras manufactured by Basler, IDS and Lucid Vision Labs.

parameters:

pSpecialVideoCaptureNamesBuffer - memory buffer supplied by the caller for the video
sources names list returned by the function;
BuffSize - the buffer size in characters;

● NNANPR_CreateSpecialVideoCapture

NNANPR_RESULT NNANPR_CreateSpecialVideoCapture(
NNANPR_ImageCapture_ptr *pImageCapture_ptr,
const wchar_t *pSpecialVideoCaptureName)

The function creates the video capture object based on the video source name returned by the
NNANPR_GetSpecialVideoCaptureList function.

25



Intertraff ANPR Engine SDK Documentation

parameters:

pImageCapture_ptr - on the function return it holds the created video capture object;
pSpecialVideoCaptureName - the name of the special video source device returned by the
NNANPR_GetSpecialVideoCaptureList function.

● NNANPR_FreeVideoCapture

NNANPR_RESULT NNANPR_FreeVideoCapture(
NNANPR_ImageCapture_ptr pImageCapture_ptr)

It closes the video capture object and frees all associated resources.

● NNANPR_CaptureFrame

NNANPR_RESULT NNANPR_CaptureFrame(
NNANPR_ImageCapture_ptr pImageCapture_ptr,
NNANPR_Image_ptr pImage_ptr)

The function gets the next frame as an image object from the video stream associated with the capture
object. The image object must be created first by the NNANPR_CreateImage function.

● NNANPR_StartCaptureFrameAsync

NNANPR_RESULT NNANPR_StartCaptureFrameAsync(
NNANPR_ImageCapture_ptr pImageCapture_ptr,
NNANPROnFrameCallback *fOnFrameCallback,
void *pAddInfo)

The function starts asynchronous frames capture from the video capture object with rate of the stream.
It doesn’t block the calling thread.

parameters:

pImageCapture_ptr - video capture object;
fOnFrameCallback - callback function which will be called on each frame arrived from the video
stream;
pAddInfo - additional parameter which will be sent to the callback function;

26



Intertraff ANPR Engine SDK Documentation

● NNANPR_StopCaptureFrameAsync

NNANPR_RESULT NNANPR_StopCaptureFrameAsync(
NNANPR_ImageCapture_ptr pImageCapture_ptr)

It stops asynchronous frame capturing.

● NNANPR_GetVideoFPS

NNANPR_RESULT NNANPR_GetVideoFPS(
NNANPR_ImageCapture_ptr pImageCapture_ptr,
double *pFPS

The function tries to determine the video stream FPS if possible.

● NNANPR_FindPlates

NNANPR_RESULT NNANPR_FindPlates(
NNANPR_PlateFinder_ptr pPlateFinder_ptr,
NNANPR_Image_ptr pImage_ptr,
NNANPR_Object *pPlateArray,
size_t *plateArraySizeInOut)

The function finds car license plates on the provided image.

parameters:

pPlateFinder_ptr - Plate Finder object;
pImage_ptr - image object on which the license plates will be found;
pPlateArray - in / out buffer for license plate objects;
plateArraySizeInOut - on input it defines the size of the provided pPlateArray buffer; on
output it holds the actual number of found plates;

return values:

NNANPR_RESULT_FALSE - if it can not find any plate;
NNANPR_BUFFER_TOO_SMALL - provided pPlateArray buffer is too small to hold all found plate
objects;

27



Intertraff ANPR Engine SDK Documentation

● NNANPR_FindPlatesAsync

NNANPR_RESULT NNANPR_FindPlatesAsync(
NNANPR_PlateFinder_ptr pPlateFinder_ptr,
NNANPR_Image_ptr pImage_ptr,
NNANPROnPlateFoundCallback *pOnPlateFoundCallback,
void *pAddInfo)

The function finds plates on the provided image asynchronously in a separate thread so that it returns
immediately before the Plate Finder object will do the job. The image queue depth is equal to 1, i.e. if
the plate finding thread is busy and the image queue already contains the image then the next call to
the function overwrites the image (and the corresponding pAddInfo) in the queue.

parameters:

pPlateFinder_ptr - plate finder object;
pImage_ptr - input image object;
pOnPlateFoundCallback - callback function which will be called at the end of the plate finding
operation;
pAddInfo - additional parameter which will be sent to callback function;

● NNANPR_ReconizePlate

NNANPR_RESULT NNANPR_ReconizePlate(
NNANPR_PlateRecognizer_ptr pPlateRecognizer_ptr,
NNANPR_Image_ptr pImage_ptr,
RECT Position,
NNANPR_RecognizerResult *resultRR)

The function recognizes (finds license text string, plate type, country of origin and so on if possible) the
license plate on the image at the defined position.

parameters:

pPlateRecognizer_ptr - plate recognizer object;
pImage_ptr - input image object;
Position - position in pixels of license plate on the image (it can be the result of plate finding
operation); coordinate origin is at the top left image corner;
resultRR - plate recognition result object;

return values:

28



Intertraff ANPR Engine SDK Documentation

NNANPR_RESULT_SUCCESS - if the function succeeds;
NNANPR_RESULT_FALSE - if the plate was not recognized;

● NNANPR_ReconizePlateAsync

NNANPR_RESULT NNANPR_ReconizePlateAsync(
NNANPR_PlateRecognizer_ptr pPlateRecognizer_ptr,
NNANPR_Image_ptr pImage_ptr,
RECT Position,
NNANPROnRecognitionCallback *pCallback,
void *pAddInfo)

The function recognizes car license plates on the provided image asynchronously in a separate thread
so that it returns immediately before the Plate Recognizer object will do the job. The image queue
depth is equal to 1, i.e. if the plate recognizing thread is busy and the image queue already contains the
image then the next call to the function overwrites the image (and the corresponding pAddInfo) in the
queue.

parameters:

pPlateRecognizer_ptr - plate recognizer object;
pImage_ptr - input image object;
Position - position of the plate on the input image in pixels (possibly it’s the result of the plate
finding operation); coordinate origin is at the top - left corner of the image;
pCallback - callback function called at the end of the successive plate recognition operation;
pAddInfo - additional parameter for the callback function; it is associated with the image object;

● NNANPR_CreateRecognitionAccumulator

NNANPR_RESULT NNANPR_CreateRecognitionAccumulator(
NNANPR_RecognitionAccumulator_ptr *pRecognitionAccumulator_ptr)

The function creates the recognition accumulation object. The recognition accumulator is a technique of
improving the license plate recognition confidence by merging (accumulating) several recognition
results of the same plate from different frames.

● NNANPR_SetupRecognitionAccumulator

NNANPR_RESULT NNANPR_SetupRecognitionAccumulator(
NNANPR_RecognitionAccumulator_ptr pRecognitionAccumulator_ptr,

29



Intertraff ANPR Engine SDK Documentation

size_t MaxAccumulationTimeMs,
size_t MaxAccumulationFrames,
size_t MinPlateSizeForUse,
size_t MaxDifferenceForEquivalence)

The function configures the recognition accumulator object.

parameters:

pRecognitionAccumulator_ptr - accumulation object;
MaxAccumulationTimeMs - maximum time span of accumulating recognition results for one plate
number in video stream;
MaxAccumulationFrames - maximum recognition results accumulated for one plate number;
MinPlateSizeForUse - minimum accepted license plate text size in characters;
MaxDifferenceForEquivalence - maximum difference in plate text characters of merged
recognition results;

● NNANPR_FreeRecognitionAccumulator

NNANPR_RESULT NNANPR_FreeRecognitionAccumulator(
NNANPR_RecognitionAccumulator_ptr pRecognitionAccumulator_ptr)

It releases the recognition accumulation object and frees associated resources.

● NNANPR_ReconizePlateAsyncWithAccumulator

NNANPR_RESULT NNANPR_ReconizePlateAsyncWithAccumulator(
NNANPR_PlateRecognizer_ptr pPlateRecognizer_ptr,
NNANPR_RecognitionAccumulator_ptr pRecognitionAccumulator_ptr,
NNANPR_Image_ptr pImage_ptr,
RECT Position,
NNANPROnRecognitionCallback *pCallback,
void *pAddInfo)

This function is the same as NNANPR_ReconizePlateAsync but it makes use of the recognition
results accumulator (see Architecture overview section).

parameters:

pPlateRecognizer_ptr - plate recognizer object;
pRecognitionAccumulator_ptr - recognition results accumulator object;
pImage_ptr - input image object;

30



Intertraff ANPR Engine SDK Documentation

Position - position of the plate on the input image in pixels (possibly it’s the result of the plate
finding operation); coordinate origin is at the top - left corner of the image;
pCallback - callback function called when the recognition accumulator issues the accumulated
recognition result;
pAddInfo - additional parameter for the callback function; it is associated with the image object
having the best recognition confidences among accumulated for this recognition result;

● NNANPR_GetErrorString

NNANPR_RESULT NNANPR_GetErrorString(
NNANPR_RESULT errCode,
wchar_t *errorBuffer,
size_t buffSize)

The function returns a human readable text string corresponding to the particular error code returned
by the SDK API functions.

31


